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Second-Order Nonlinear Optical Polyphosphazenes

1 1 1 .2Alexa A. Dembek , Harry R. Allcock , Chulhee Kim , William H. Steier

Robert L. S. Devine2 , Yongqiang Shi2 , and Charles W. Spangler3

1Department of Chemistry, The Pennsylvania State University,

University Park, PA 16802. 2Department of Electrical Engineering,

University of Southern California, Los Angeles, CA 90089. 3Department

of Chemistry, Northern Illinois University, DeKalb, IL 60115.

In this contribution we describe the synthesis and second-
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mixed-substituent poly(organophosphazenes) that possess 
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covalently attached donor-acceptor substituted, conjugated

moieties. The general structure of the polymers is By .. .
D '-t';b j,- : f

[NP(OCH2CF3)x (OR) yIn, where OR = -
CHC NI , ' ,or

O(CH2 CH20)kC H4 -CH=CH-C 6H4 NO2 where k- 1-3, and

-OCH 2CH 2N(CH 2CH 3)C 6H 4 -N=N-C 6 H 4 N02  and x + y = 100%. The

nonlinear optical properties of thin films of the polymers

were investigated by using second harmonic generation, giving

second-harmonic coefficients, d33, in the range 4.1-34 pm/V.
A

The development of polymeric nonlinear optical (NLO) materials is currently

an area of intense investigation (1-4). Polymeric systems which show

second harmonic generation (SHG) have conjugated aromatic molecules with

electron-donor and acceptor moieties in a noncentrosymmetric array. These
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nonlinear optical molecules can be "doped" into a glassy polymer matrix

(5-7) or can be covalently attached to a polymer backbone (8-14). The

noncentrosymmetric alignment of the nonlinear optical molecules in both

approaches is achieved by heating the polymer to its glass transition

temperature, at which point the chains have reorientational mobility,

followed by application of a strong electric field. In this paper, we will

discuss the synthesis and nonlinear optical properties of phosphazene

macromolecules that possess covalently attached donor-acceptor substituted,

conjugated moieties (15). The structures of the nonlinear optical side

groups are illustrated in Figure 1. Polyphosphazenes offer a potential

advantage in that the macroscopic properties of the polymer can be tailored

by the incorporation of specific substituent groups (16-21).

Figure I near here.

Synthesis of Nonlinear Optical Side Groups

Our initial work involved the synthesis of side chains which have the

molecular characteristics required for a nonlinear optical response. Com-

pounds 1-3 were prepared by the use of Horner-Emmons-Wadsworth Wittig

methodology (22). Compound 4 was commercially available (Aldrich) as the

dye, Disperse Red 1. As outlined in Scheme I, in the first step in the

synthesis of 1-3, 4-hydroxybenzaldehyde was allowed to react with

chloroethanol derivatives in basic ethanol containing potassium iodide for

15 h at reflux. The benzaldehyde product was then allowed to react with

diethyl(4-nitrobenzyl)phosphonate in the presence of potassium
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tert-butoxide in ethylene glycol dimethyl ether for 15 h at room tempera-

ture and 1 h at 85°C to yield the stilbene side groups. Compounds 1-3 were

purified by column chromatography and were recrystallized from

n-hexane/methylene chloride to yield yellow solids.

Scheme I near here.

Compounds 1-4 were characterized by conventional spectroscopic tech-

niques. For the stilbene compounds 1-3, the trans conformation of the

double bond was confirmed by IH NMR analysis. For example, in the 1H NMR

spectrum of 1, the olefinic protons were detected as a doublet of doublets

resonance at 7.23 and 7.01 ppm, with a trans coupling constant of 16.3 Hz.

In addition, the 13C NMR spectra of the stilbene compounds indicated the

presence of a single isomer that was consistent with the desired struc-

tures. The UV/visible spectra in tetrahydrofuran solution showed a Xmax

value for 1-3 at 378 nm (e 2.6 x 10 4) and for 4 at 490 nm (c 3.1 x 10 4).

Synthesis of Nonlinear Optical Phosphazene Macromolecules

The overall synthetic pathway to mixed-substituent polyphosphazenes 5-9 is

described in Scheme II, and the corresponding polymer structures and

composition ratios are listed in Table I. Poly(dichlorophosphazene) was

prepared by the thermal ring-opening polymerization of the c clic trimer

(NPCl2 )3, as described in earlier papers (16-18). The substitution reac-

tions of poly(dichlorophosphazene) were carried out in three steps. The

synthesis and purification of polymer 6 will be discussed as a representa-

tive example. In the first step, sodium trifluoroethoxide was added to
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poly(dichlorophosphazene) to replace approximately 50% of the chlorine

atoms. In the second step, a stoichiometric deficiency of the sodium salt

of 1 was allowed to react with the partially substituted polymer. In the

final step, an excess of sodium trifluoroethoxide was added to replace the

remaining chlorine atoms in order to obtain a fully derivatized,

hydrolytically stable polymer. This three step synthetic procedure was

necessary because the direct addition of the sodium salt of 1 to

poly(dichlorophosphazene) resulted in the formation of an insoluble, incom-

pletely substituted polymeric precipitate. Polymer 6 was isolated by

precipitation from the concentrated THF reaction mixture into water and was

purified by dialysis against methanol/water (1:1 v/v) for 7 to 10 days.

Scheme II and Table I near here.

The preparation of soluble, single-substituent polyphosphazenes that

contained species 1-4 as side groups could not be accomplished because, as

noted previously, the direct addition of the sodium salt of the chromophore

to poly(dichlorophosphazene) resulted in the formation of a polymeric,

incompletely substituted precipitate. The precipitate was insoluble in

refluxing THF as well as warm dioxane, N,N-dimethylformamide,

dimethylsulfoxide, nitrobenzene and N-methylpyrrolidinone. This insolubil-

ity was attributed to both the extended rigid structure and the intrinsi-

cally high polarity of the donor-acceptor substituted, conjugated side

chains. Both factors may induce extensive side group stacking and thus

lead to the formation of insoluble polymers.

The preparation of soluble polymers containing species 1-4 was accom-

plished by the use of the polar trifluoroethoxy group as co-substituent.
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The partially substituted trifluoroethoxy polymer, prepared in the first

step of the polymer synthesis (see Scheme II), provided a polar environment

for the incorporation of the chromophoric side chains. However, the

maximum loading of the polymers by the chromophores 1-4 was limited by the

solubility of the polymeric products. Hence, the side group ratios for

polymers 6-9 represent a maximum incorporation range of the chromophore

side group by the use of this synthetic scheme.

The preparation of mixed-substituent polymers that contained

co-substituents other than trifluoroethoxy groups was also explored. This

part of the investigation was carried out in an attempt to tailor the

macromolecular properties, for example, glass transition temperature,

solubility behavior, morphology, and film-forming ability, in order to

optimize the nonlinear optical behavior. However, the aryloxy

substituents, including phenoxy, 4-methylphenoxy, and 3-ethylphenoxy, as

well as the alkoxy substituent, methoxyethoxyethoxy, all yielded insoluble

polymers, even with low incorporation ratios (10-15%) of the chromophore.

These results suggest that the highly polar trifluoroethoxy group is a

necessary co-substituent for the preparation of soluble polymers containing

1-4 as side chains.

Structural Characterization and Properties of Polyphosphazenes

Characterization of polymers 5-9 was achieved by IH and 31P NMR spec-

troscopy, gel permeation chromatography, differential scanning calorimetry,

UV/visible and infrared spectroscopy, and elemental microanalysis. All the

polymers were soluble in common organic media, such as tetrahydrofuran,

acetone, and methylethyl ketone.
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A typical 31P NMR spectrum consisted of a sharp, singlet resonance at

-8 ppm, presumably a consequence of the similar environment at the

trifluoroethoxy and ethoxy-ether substituted phosphorus atoms in the mixed

substituent system. In addition, the singlet resonance indicated a high

degree of chlorine replacement. This was supported by the elemental

microanalysis data.

The substituent ratios of the polymers were determined by 1H NMR

analysis by a comparison of the integration of the combined aromatic and

vinyl resonances, which were generally between 8.4 and 6.8 ppm, with the

trifluoroethoxy resonance at 4.5 ppm.

The molecular weights of polymers 5-9 were estimated by gel permeation

chromatography to be in the range M = 9.4 x 10 to 3.2 x 10 , M > 9.3 xn w

10 5, with M w/Mn values in the region 4-7. UV/visible spectra in

tetrahydrofuran showed the same trends as the corresponding side group

compounds 1-4, with Xmax values in the range 369-378 nm for 5-7 and 468 nm

for 8. Infrared spectroscopy of thin films cast on KBr for all of the

polymers showed an intense P-N stretching vibration at 1250-1200 cm" . In

addition, the absorbance for the NO2 unit at ca. 1345 cm- was detected.

The glass transition temperature (T ) of the mixed-substituent

polyphosphazenes 5-9 varied with the loading of the chromophoric side chain

and with the length of the connecting ethyleneoxy spacer group. Species

with one ethyleneoxy unit comprising the spacer group generated the highest

glass transition temperature. The T values were 19°C for 5, 25°C for 6,g

25°C for 7, 540C for 8, and 44°C for 9. No evidence of T(1) or T transi-
m

tions were detected for any of these polymer samples. Hence, the addition

of the chromophoric substituent disrupts the microcrystallinity of the
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single substituent polymer [NP(OCH 2CF 3)2]n , which has a T at -66*C, a T(1)

between 60 and 90°C, and a Tm at 240°C (24).

The colors of the polyphosphazenes corresponded to those of the

chromophores employed. Thus, polymers 5-8, which contained chromophores

1-3, were yellow, while polymer 9, which contained chromophore 4, was red.

Evaluation of the Second Order Nonlinear Optical Behavior

Films of polyphosphazenes 5-9 were spin cast onto indium-tin oxide coated

glass from a concentrated solution in methylethyl ketone. The solution was

first filtered to remove particulate impurities and the films were heated

to 80-85°C to remove the solvent. The thicknesses and refractive indices

of the polymers were obtained from ellipsometric measurements on calibra-

tion layers, which were spun on BK7 glass substrates. Measurements on each

sample were performed at four different wavelengths (634.8 nm, 753.0 nm,

802.0 nm and 852 nm) in order to minimize the errors in the extrapolated

values at 532 and 1064 nm. The thickness of the layers examined ranged

from 70-250 um, and were always much less than the coherence lengths, as

determined from the refractive index measurements.

The NLO properties of the films were subsequently investigated using

second-harmonic generation. A Q-switched Nd:YAG laser (A = 1064 ram) with a

pulse with of 8 ns and a pulse energy of 10 mJ was used as the source of

the fundamental, and a reference sample of Y-cut quartz (d = 0.46 pm/V)

was used for calibration of the frequency-doubled signal.

Alignment of the NLO side groups in the films was achieved by single-

point corona poling, with the point source held at +10 kV, at a distance of

1.5 cm from the surface. Increasing poling voltage led to an increase in
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the harmonic intensity, i.e. maximum alignment was not achieved at this

voltage. However, higher voltages occasionally resulted in damage to the

sample surface. Hence, for comparison purposes, the voltage was limited to

10 kV. Because of the low glass transition temperatures of these polymers,

the poling was carried out at room temperature, concurrent with the

second-harmonic generation measurements. This arrangement had the advan-

tage of reproducibility of the measurement condition for each layer.

Following removal of the poling field, the second-harmonic signal decayed

to zero within a few minutes.

The values of the second-harmonic coefficient, d33, for samples 5-9

are listed in Table II. The values of d33 were obtained using the analysis

of Jerphagnon and Kurtz (25), and were calculated under the assumption that

the degree of alignment of the nonlinear optical chromophores can be

described using the isotropic model. Hence, we assumed d33=3d3 1 (4).

Table II near here.

In the series of polymers 5-8, which contain the nitrostilbene side

groups 1-3, the trend in the d33 value versus loading of the chromophoric

side group was well reproduced, with d33 values in the range 4.1-5.0 pm/V.

Note that the decrease in the spacer length from three to one ethyleneoxy

units appeared to have no effect on the d33 value. For polymer 9, which

contained the high azo chromophore 4, the d33 value was 34 pm/V, which

was significantly higher than for the stilbene substituted polymers that

contained equivalent side group incorporation ratios. This is partially a

consequence of the greater resonant enhancement, given the longer wave-

length of the azo chromophore absorption peak.
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Conclusions and Future Prospects

The synthetic versatility offered by the phosphazene system has allowed the

preparation of polymers that contain nonlinear optical units as pendant

side chains. Our future research on nonlinear optical polyphosphazenes

will focus on tailoring the macromolecular system to generate higher glass

transition temperatures. This, and the stabilized alignment of the

chromophoric side groups, should be attainable by the incorporation of a

third co-substituent that contains a crosslinkable moiety. Thus,

crosslinking of the polymL - matrix during the application of an electric

field would be expected to stabilize the nonlinear optical character.
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Scheme I
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Scheme 11

NaOCH2CF3  NaOR NaOCH2CF3
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5-9

For 5 -8 OR = -O(CH 2CH2O)k-_ \/ O
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Table I
Polyphosphazene Structures and Composition Ratios

Compda Side Group Structureb  yC ,

5 k-3 26

6 k - 3 36

7 k - 2 39

8 k -i1 31

9 33

bSee Scheme II for general polymer structure
See Figure 1 for general side group structure

cx + y f 100%



Table II
d3 3 Coefficients for Polyphosphazenes

Compda  d3 3, pm/V

5 (y-26%) 4.1

8 (y-31%) 4.7

6 (yi36%) 5.0

7 (y-39%) 5.0

9 (y-3 3%) 34

aSee Scheme II and Table I for polymer structures and compostion ratios;

Polymers 5-8 arranged in order of increasing value of y
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